Fakultät für Elektrotechnik und Informationstechnik
Advisor:
Schuller, Björn W. (Prof. Dr. habil.)
Referee:
Schuller, Björn W. (Prof. Dr. habil.); Macke, Jakob (Prof. Dr.)
Language:
en
Subject group:
DAT Datenverarbeitung, Informatik; ELT Elektrotechnik; LIN Linguistik
TUM classification:
DAT 815d
Abstract:
This thesis explores and proposes new approaches of deep learning methods adopting deep feed-forward, convolutional, and recurrent neural networks to common problems of computational paralinguistics based on the acoustics of human speech, such as the detection, prediction, and classification of human social signals, emotion, conflict in speech, or likability of individuals. Experimental results demonstrate the advantages of the proposed algorithms over previously published deep learning methods.
Translated abstract:
Diese Dissertation untersucht und beschreibt neue Ansätze zu Methoden des Deep Learning basierend auf menschlichen, akustischen Sprachsignalen und unter Verwendung von neuronalen Netzwerken. Dabei werden bekannte Probleme der Computerparalinguistik untersucht, wie z.B. die Detektion, Prädiktion und Klassifizierung menschlicher Kommunikationslaute, Emotionen, Konflikte oder sympathischer Wahrnehmung von Personen. Die experimentellen Ergebnisse belegen die Vorteile der vorgeschlagenen Algorithmen gegenüber bereits publizierten Methoden.
«
Diese Dissertation untersucht und beschreibt neue Ansätze zu Methoden des Deep Learning basierend auf menschlichen, akustischen Sprachsignalen und unter Verwendung von neuronalen Netzwerken. Dabei werden bekannte Probleme der Computerparalinguistik untersucht, wie z.B. die Detektion, Prädiktion und Klassifizierung menschlicher Kommunikationslaute, Emotionen, Konflikte oder sympathischer Wahrnehmung von Personen. Die experimentellen Ergebnisse belegen die Vorteile der vorgeschlagenen Algorithmen...
»