Monolithic fuel designs, which allow the highest uranium densities with UMo for the conversion of research reactors to lower enriched uranium, require a diffusion barrier between the fuel foil and the surrounding aluminum cladding. The application of this coating is one of the most challenging tasks for the fabrication of such nuclear fuel. In the present thesis, a sputtering technique was further developed and optimized, so that fuel plates, according to all specifications, could be produced for the first time. Two of these plates were successfully irradiated in the framework of the EMPIrE test. The developed method is currently the most flexible and capable process for the coating of fuel foils worldwide.
«
Monolithic fuel designs, which allow the highest uranium densities with UMo for the conversion of research reactors to lower enriched uranium, require a diffusion barrier between the fuel foil and the surrounding aluminum cladding. The application of this coating is one of the most challenging tasks for the fabrication of such nuclear fuel. In the present thesis, a sputtering technique was further developed and optimized, so that fuel plates, according to all specifications, could be produced fo...
»