Benutzer: Gast  Login
Titel:

Data-efficient optimization of thermally-activated polymer actuators through machine learning

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Zhang, Yuhao; Vaara, Maija; Alesafar, Azin; Nguyen, Duc Bach; Silva, Pedro; Koskelo, Laura; Ristolainen, Jussi; Stosiek, Matthias; Löfgren, Joakim; Vapaavuori, Jaana; Rinke, Patrick
Abstract:
For applications in soft robotics and smart textiles, thermally-activated, twisted, and coiled polymer actuators can offer high mechanical actuation with proper optimization of their processing conditions. However, optimization is often aggravated by the potentially high number of processing variables and the time-consuming nature of materials synthesis and characterization. To overcome these problems, we employed an active machine learning workflow using Bayesian optimization. We subsequently u...     »
Zeitschriftentitel:
Materials & Design 2025-05
Jahr:
2025
Band / Volume:
253
Seitenangaben Beitrag:
113908
Volltext / DOI:
doi:10.1016/j.matdes.2025.113908
Verlag / Institution:
Elsevier BV
E-ISSN:
0264-1275
Publikationsdatum:
01.05.2025
 BibTeX