Benutzer: Gast  Login
Titel:

Technical note: Towards atmospheric compound identification in chemical ionization mass spectrometry with pesticide standards and machine learning

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Bortolussi, Federica; Sandström, Hilda; Partovi, Fariba; Mikkilä, Joona; Rinke, Patrick; Rissanen, Matti
Abstract:
Chemical ionization mass spectrometry (CIMS) is widely used in atmospheric chemistry studies. However, due to the complex interactions between reagent ions and target compounds, chemical understanding remains limited and compound identification difficult. In this study, we apply machine learning to a reference dataset of pesticides in two standard solutions to build a model that can provide insights from CIMS analyses in atmospheric science. The CIMS measurements were performed with an Orbitrap...     »
Zeitschriftentitel:
Atmospheric Chemistry and Physics 2025-01
Jahr:
2025
Band / Volume:
25
Heft / Issue:
1
Seitenangaben Beitrag:
685-704
Volltext / DOI:
doi:10.5194/acp-25-685-2025
Verlag / Institution:
Copernicus GmbH
E-ISSN:
1680-7324
Publikationsdatum:
17.01.2025
 BibTeX