Benutzer: Gast  Login
Titel:

Deep Learning Framework for Predicting Transonic Wing Buffet Loads Due to Structural Eigenmode-Based Deformations

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Zahn, Rebecca; Zieher, Moritz; Breitsamter, Christian
Abstract:
In the present paper, a reduced-order modeling (ROM) approach based on a hybrid neural network is presented in order to calculate wing buffet pressure distributions due to structural eigenmode-based deformations. The accurate prediction of unsteady surface pressure distributions is crucial for assessing aeroelastic stability and preventing structural failure, but full-order simulations are computationally expensive; the proposed ROM provides a fast and efficient alternative with a sufficient le...     »
Stichworte:
convolutional autoencoder; deep learning; long short-term memory neural network; NASA CRM; wing buffet aerodynamics
Dewey Dezimalklassifikation:
620 Ingenieurwissenschaften
Zeitschriftentitel:
Aerospace
Jahr:
2025
Band / Volume:
12
Heft / Issue:
5
Seitenangaben Beitrag:
415
Nachgewiesen in:
Scopus
Sprache:
en
Volltext / DOI:
doi:10.3390/aerospace12050415
Verlag / Institution:
MDPI AG
E-ISSN:
2226-4310
Hinweise:
Acknowledgments: The Gauss Centre of Supercomputing e.V. is gratefully acknowledged for funding this project by providing computing time on the SuperMUC-NG at Leibniz Supercomputing Centre. In addition, the authors thank the Institute of Aerodynamics and Gas Dynamics of the University of Stuttgart, in particular Maximilian Ehrle, for providing the numerical grid of the CRM.
Eingereicht (bei Zeitschrift):
14.04.2025
Angenommen (von Zeitschrift):
06.05.2025
Publikationsdatum:
07.05.2025
TUM Einrichtung:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX