User: Guest  Login
Title:

Prediction of aerodynamic coefficients for multi-swept delta wings via a hybrid neural network

Document type:
Zeitschriftenaufsatz
Author(s):
Zieher, Moritz; Breitsamter, Christian
Abstract:
This study investigates the prediction capabilities of a hybrid neural network model for the aerodynamic coefficients of multiple swept delta wings, focusing on rapidly estimating coefficient slopes and aerodynamic characteristics. By leveraging a machine learning approach combining image classification and conventional feed-forward neural networks, the study aims to provide an efficient alternative to resource-intensive computational fluid dynamics simulations or wind tunnel experiments during...     »
Keywords:
Hybrid neural network Aerodynamic coefficients Multiple swept delta wings Machine learning
Dewey Decimal Classification:
620 Ingenieurwissenschaften
Journal title:
Aerospace Science and Technology
Year:
2025
Journal volume:
156
Pages contribution:
109762
Covered by:
Scopus
Language:
en
Fulltext / DOI:
doi:10.1016/j.ast.2024.109762
WWW:
https://www.sciencedirect.com/science/article/pii/S1270963824008915
Publisher:
Elsevier BV
E-ISSN:
1270-9638
Notes:
Acknowledgements The funding of the presented work within the Luftfahrtforschungsprogramm VI-1 (LUFO VI-1) project DIGIfly (FKZ: 20X19091) by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) is gratefully acknowledged.
Submitted:
30.07.2024
Accepted:
19.11.2024
Date of publication:
01.01.2025
TUM Institution:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX