User: Guest  Login
Title:

ML-ILES: End-to-end optimization of data-driven high-order Godunov-type finite-volume schemes for compressible homogeneous isotropic turbulence

Document type:
Zeitschriftenaufsatz
Author(s):
Bezgin, Deniz A.; Buhendwa, Aaron B.; Schmidt, Steffen J.; Adams, Nikolaus A.
Abstract:
In this work, we present a data-driven high-order Godunov-type finite-volume scheme for machine-learned implicit large-eddy simulations (ML-ILES) of compressible homogeneous isotropic turbulence. For the simulation of compressible flows, many Godunov-type finite-volume schemes combine high-order shock-capturing schemes with approximate Riemann solvers. Here, we devise neural network-based reconstruction operators which are trained to best approximate turbulent subgrid-scales. In particular, we u...     »
Keywords:
Compressible turbulence; Computational fluid dynamics; Implicit large-eddy simulations; Machine learning; Navier-Stokes equations; Turbulence
Dewey Decimal Classification:
620 Ingenieurwissenschaften
Journal title:
Journal of Computational Physics
Year:
2025
Journal volume:
522
Pages contribution:
113560
Covered by:
Scopus
Language:
en
Fulltext / DOI:
doi:10.1016/j.jcp.2024.113560
WWW:
https://www.sciencedirect.com/science/article/pii/S0021999124008088
Publisher:
Elsevier BV
E-ISSN:
0021-9991
Notes:
Funding text 1 Financial support by the Deutsche Forschungsgemeinschaft, project number 525796191, within SPP 2410 Hyperbolic Balance Laws in Fluid Mechanics: Complexity, Scales, Randomness (CoScaRa) is gratefully acknowledged. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer JUWELS [40] at J\u00FClich Supercomputing Centre (JSC). Funding text 2 Financial support by t...     »
Submitted:
01.04.2024
Accepted:
03.11.2024
Date of publication:
01.02.2025
TUM Institution:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX