Benutzer: Gast  Login
Weniger Felder
Einfache Suche
Titel:

Reversing the Abnormal: Pseudo-Healthy Generative Networks for Anomaly Detection

Dokumenttyp:
Proceedings Paper
Autor(en):
Bercea, Cosmin I.; Wiestler, Benedikt; Rueckert, Daniel; Schnabe, Julia A.
Abstract:
Early and accurate disease detection is crucial for patient management and successful treatment outcomes. However, the automatic identification of anomalies in medical images can be challenging. Conventional methods rely on large labeled datasets which are difficult to obtain. To overcome these limitations, we introduce a novel unsupervised approach, called PHANES (Pseudo Healthy generative networks for ANomaly Segmentation). Our method has the capability of reversing anomalies, i.e., preserving...     »
Zeitschriftentitel:
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
Jahr:
2023
Band / Volume:
14224
Seitenangaben Beitrag:
293-303
Volltext / DOI:
doi:10.1007/978-3-031-43904-9_29
Print-ISSN:
0302-9743
TUM Einrichtung:
Professur für AI for Image-Guided Diagnosis and Therapy (Prof. Wiestler)
 BibTeX