User: Guest  Login
Title:

Encrypted federated learning for secure decentralized collaboration in cancer image analysis.

Document type:
Journal Article
Author(s):
Truhn, Daniel; Tayebi Arasteh, Soroosh; Saldanha, Oliver Lester; Müller-Franzes, Gustav; Khader, Firas; Quirke, Philip; West, Nicholas P; Gray, Richard; Hutchins, Gordon G A; James, Jacqueline A; Loughrey, Maurice B; Salto-Tellez, Manuel; Brenner, Hermann; Brobeil, Alexander; Yuan, Tanwei; Chang-Claude, Jenny; Hoffmeister, Michael; Foersch, Sebastian; Han, Tianyu; Keil, Sebastian; Schulze-Hagen, Maximilian; Isfort, Peter; Bruners, Philipp; Kaissis, Georgios; Kuhl, Christiane; Nebelung, Sven; Kat...     »
Abstract:
Artificial intelligence (AI) has a multitude of applications in cancer research and oncology. However, the training of AI systems is impeded by the limited availability of large datasets due to data protection requirements and other regulatory obstacles. Federated and swarm learning represent possible solutions to this problem by collaboratively training AI models while avoiding data transfer. However, in these decentralized methods, weight updates are still transferred to the aggregation server...     »
Journal title abbreviation:
Med Image Anal
Year:
2024
Journal volume:
92
Fulltext / DOI:
doi:10.1016/j.media.2023.103059
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/38104402
Print-ISSN:
1361-8415
TUM Institution:
1622; Institut für Diagnostische und Interventionelle Radiologie (Prof. Makowski); Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX