Benutzer: Gast  Login
Titel:

Encrypted federated learning for secure decentralized collaboration in cancer image analysis.

Dokumenttyp:
Journal Article
Autor(en):
Truhn, Daniel; Tayebi Arasteh, Soroosh; Saldanha, Oliver Lester; Müller-Franzes, Gustav; Khader, Firas; Quirke, Philip; West, Nicholas P; Gray, Richard; Hutchins, Gordon G A; James, Jacqueline A; Loughrey, Maurice B; Salto-Tellez, Manuel; Brenner, Hermann; Brobeil, Alexander; Yuan, Tanwei; Chang-Claude, Jenny; Hoffmeister, Michael; Foersch, Sebastian; Han, Tianyu; Keil, Sebastian; Schulze-Hagen, Maximilian; Isfort, Peter; Bruners, Philipp; Kaissis, Georgios; Kuhl, Christiane; Nebelung, Sven; Kat...     »
Abstract:
Artificial intelligence (AI) has a multitude of applications in cancer research and oncology. However, the training of AI systems is impeded by the limited availability of large datasets due to data protection requirements and other regulatory obstacles. Federated and swarm learning represent possible solutions to this problem by collaboratively training AI models while avoiding data transfer. However, in these decentralized methods, weight updates are still transferred to the aggregation server...     »
Zeitschriftentitel:
Med Image Anal
Jahr:
2024
Band / Volume:
92
Volltext / DOI:
doi:10.1016/j.media.2023.103059
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/38104402
Print-ISSN:
1361-8415
TUM Einrichtung:
1622; Institut für Diagnostische und Interventionelle Radiologie (Prof. Makowski); Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX