The present work demonstrates how reinforcement learning can be used for automated flowsheet synthesis for conceptual design problems in chemical engineering. A flowsheet simulation based on thermodynamic short-cut models is implemented and serves as environment for the reinforcement learning agent. Several training algorithms, which enable training the agent on problems of increasing difficulty, are developed. The trained agent can set up processes from scratch without using heuristics.
Übersetzte Kurzfassung:
In der vorliegenden Arbeit wird Reinforcement Learning für die automatisierte Fließbildsynthese in der chemischen Verfahrenstechnik eingesetzt. Eine Fließbildsimulation, basierend auf thermodynamischen Shortcut-Modellen, dient als Umgebung für den Reinforcement-Learning-Agenten. Es werden mehrere Trainingsalgorithmen entwickelt, um den Agenten auf Problemen mit steigendem Schwierigkeitsgrad zu trainieren. Der trainierte Agent generiert Prozesse ohne Verwendung von Heuristiken.