Spin-ordered states close to metal-insulator transitions are poorly understood theoretically and challenging to probe in experiments. Here, we propose that the quantum twisting microscope, which provides direct access to the energy-momentum resolved spectrum of single-particle and collective excitations, can be used as a novel tool to distinguish between different types of magnetic order. To this end, we calculate the single-particle spectral function and the dynamical spin-structure factor for both a ferromagnetic and antiferromagnetic generalized Wigner crystal formed in fractionally filled moiré superlattices of transition metal dichalcogenide heterostructures. We demonstrate that magnetic order can be clearly identified in these response functions. Furthermore, we explore signatures of quantum phase transitions in the quantum twisting microscope response. We focus on the specific case of triangular moiré lattices at half filling that have been proposed to host a topological phase transition between a chiral spin liquid and a 120∘ ordered state. Our work demonstrates the potential for quantum twisting microscopes to characterize quantum magnetism in moiré heterostructures.
«
Spin-ordered states close to metal-insulator transitions are poorly understood theoretically and challenging to probe in experiments. Here, we propose that the quantum twisting microscope, which provides direct access to the energy-momentum resolved spectrum of single-particle and collective excitations, can be used as a novel tool to distinguish between different types of magnetic order. To this end, we calculate the single-particle spectral function and the dynamical spin-structure factor for...
»