User: Guest  Login
Title:

Metadata-enhanced contrastive learning from retinal optical coherence tomography images.

Document type:
Journal Article
Author(s):
Holland, Robbie; Leingang, Oliver; Bogunović, Hrvoje; Riedl, Sophie; Fritsche, Lars; Prevost, Toby; Scholl, Hendrik P N; Schmidt-Erfurth, Ursula; Sivaprasad, Sobha; Lotery, Andrew J; Rueckert, Daniel; Menten, Martin J
Abstract:
Deep learning has potential to automate screening, monitoring and grading of disease in medical images. Pretraining with contrastive learning enables models to extract robust and generalisable features from natural image datasets, facilitating label-efficient downstream image analysis. However, the direct application of conventional contrastive methods to medical datasets introduces two domain-specific issues. Firstly, several image transformations which have been shown to be crucial for effecti...     »
Journal title abbreviation:
Med Image Anal
Year:
2024
Journal volume:
97
Fulltext / DOI:
doi:10.1016/j.media.2024.103296
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/39154616
Print-ISSN:
1361-8415
TUM Institution:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX