Benutzer: Gast  Login
Titel:

Metadata-enhanced contrastive learning from retinal optical coherence tomography images.

Dokumenttyp:
Journal Article
Autor(en):
Holland, Robbie; Leingang, Oliver; Bogunović, Hrvoje; Riedl, Sophie; Fritsche, Lars; Prevost, Toby; Scholl, Hendrik P N; Schmidt-Erfurth, Ursula; Sivaprasad, Sobha; Lotery, Andrew J; Rueckert, Daniel; Menten, Martin J
Abstract:
Deep learning has potential to automate screening, monitoring and grading of disease in medical images. Pretraining with contrastive learning enables models to extract robust and generalisable features from natural image datasets, facilitating label-efficient downstream image analysis. However, the direct application of conventional contrastive methods to medical datasets introduces two domain-specific issues. Firstly, several image transformations which have been shown to be crucial for effecti...     »
Zeitschriftentitel:
Med Image Anal
Jahr:
2024
Band / Volume:
97
Volltext / DOI:
doi:10.1016/j.media.2024.103296
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/39154616
Print-ISSN:
1361-8415
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX