Benutzer: Gast  Login
Titel:

Enhancing RANS Simulations Through Neural Network-Optimized Closure Coefficients

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Schlichter, Philipp; Sebald, Jonas; Pieringer, Jutta; Indinger, Thomas
Abstract:
Computational fluid dynamics (CFD) simulations play a vital role in engineering, assisting flow field prediction and shape optimization. While machine learning (ML) based methods have shown significant advances in these tasks, traditional flow simulations, particularly those based on Reynolds-Averaged Navier-Stokes (RANS) equations, continue to be widely used. To address the inherent challenges in RANS simulations, this study investigates the use of ML techniques by optimizing the closure coeffi...     »
Dewey-Dezimalklassifikation:
620 Ingenieurwissenschaften
Kongress- / Buchtitel:
Volume 2: Computational Fluid Dynamics (CFDTC); Micro and Nano Fluid Dynamics (MNFDTC); Flow Visualization
Kongress / Zusatzinformationen:
ASME 2024 Fluids Engineering Division Summer Meeting, FEDSM 2024; 2024 Heat Transfer Summer Conference and the ASME 2024 18th International Conference on Energy Sustainability
Datum der Konferenz:
July 15–17, 2024
Verlag / Institution:
American Society of Mechanical Engineers
Publikationsdatum:
15.07.2024
Jahr:
2024
Print-ISBN:
978-0-7918-8813-1
Sprache:
en
Volltext / DOI:
doi:10.1115/fedsm2024-130410
TUM Einrichtung:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX