Benutzer: Gast  Login
Titel:

MaxStyle: Adversarial Style Composition for Robust Medical Image Segmentation

Dokumenttyp:
Proceedings Paper
Autor(en):
Chen, Chen; Li, Zeju; Ouyang, Cheng; Sinclair, Matthew; Bai, Wenjia; Rueckert, Daniel
Abstract:
Convolutional neural networks (CNNs) have achieved remarkable segmentation accuracy on benchmark datasets where training and test sets are from the same domain, yet their performance can degrade significantly on unseen domains, which hinders the deployment of CNNs in many clinical scenarios. Most existing works improve model out-of-domain (OOD) robustness by collecting multi-domain datasets for training, which is expensive and may not always be feasible due to privacy and logistical issues. In t...     »
Zeitschriftentitel:
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
Jahr:
2022
Band / Volume:
13435
Seitenangaben Beitrag:
151-161
Volltext / DOI:
doi:10.1007/978-3-031-16443-9_15
Print-ISSN:
0302-9743
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX