User: Guest  Login
Title:

Hemodynamic MRI parameters to predict asymptomatic unilateral carotid artery stenosis with random forest machine learning.

Document type:
Journal Article
Author(s):
Gleißner, Carina; Kaczmarz, Stephan; Kufer, Jan; Schmitzer, Lena; Kallmayer, Michael; Zimmer, Claus; Wiestler, Benedikt; Preibisch, Christine; Göttler, Jens
Abstract:
BACKGROUND: Internal carotid artery stenosis (ICAS) can cause stroke and cognitive decline. Associated hemodynamic impairments, which are most pronounced within individual watershed areas (iWSA) between vascular territories, can be assessed with hemodynamic-oxygenation-sensitive MRI and may help to detect severely affected patients. We aimed to identify the most sensitive parameters and volumes of interest (VOI) to predict high-grade ICAS with random forest machine learning. We hypothesized an i...     »
Journal title abbreviation:
Front Neuroimaging
Year:
2023
Journal volume:
1
Fulltext / DOI:
doi:10.3389/fnimg.2022.1056503
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/37555162
TUM Institution:
Klinik und Poliklinik für Vaskuläre und Endovaskuläre Chirurgie (Prof. Eckstein); Professur für AI for Image-Guided Diagnosis and Therapy (Prof. Wiestler); Professur für Neuroradiologie (Prof. Zimmer)
 BibTeX