Benutzer: Gast  Login
Titel:

Hemodynamic MRI parameters to predict asymptomatic unilateral carotid artery stenosis with random forest machine learning.

Dokumenttyp:
Journal Article
Autor(en):
Gleißner, Carina; Kaczmarz, Stephan; Kufer, Jan; Schmitzer, Lena; Kallmayer, Michael; Zimmer, Claus; Wiestler, Benedikt; Preibisch, Christine; Göttler, Jens
Abstract:
BACKGROUND: Internal carotid artery stenosis (ICAS) can cause stroke and cognitive decline. Associated hemodynamic impairments, which are most pronounced within individual watershed areas (iWSA) between vascular territories, can be assessed with hemodynamic-oxygenation-sensitive MRI and may help to detect severely affected patients. We aimed to identify the most sensitive parameters and volumes of interest (VOI) to predict high-grade ICAS with random forest machine learning. We hypothesized an i...     »
Zeitschriftentitel:
Front Neuroimaging
Jahr:
2023
Band / Volume:
1
Volltext / DOI:
doi:10.3389/fnimg.2022.1056503
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/37555162
TUM Einrichtung:
Klinik und Poliklinik für Vaskuläre und Endovaskuläre Chirurgie (Prof. Eckstein); Professur für AI for Image-Guided Diagnosis and Therapy (Prof. Wiestler); Professur für Neuroradiologie (Prof. Zimmer)
 BibTeX