Benutzer: Gast  Login
Titel:

Artificial intelligence in atherosclerotic disease: Applications and trends.

Dokumenttyp:
Journal Article; Review
Autor(en):
Kampaktsis, Polydoros N; Emfietzoglou, Maria; Al Shehhi, Aamna; Fasoula, Nikolina-Alexia; Bakogiannis, Constantinos; Mouselimis, Dimitrios; Tsarouchas, Anastasios; Vassilikos, Vassilios P; Kallmayer, Michael; Eckstein, Hans-Henning; Hadjileontiadis, Leontios; Karlas, Angelos
Abstract:
Atherosclerotic cardiovascular disease (ASCVD) is the most common cause of death globally. Increasing amounts of highly diverse ASCVD data are becoming available and artificial intelligence (AI) techniques now bear the promise of utilizing them to improve diagnosis, advance understanding of disease pathogenesis, enable outcome prediction, assist with clinical decision making and promote precision medicine approaches. Machine learning (ML) algorithms in particular, are already employed in cardiov...     »
Zeitschriftentitel:
Frontiers in Cardiovascular Medicine
Zeitschriftentitel:
Front Cardiovasc Med
Jahr:
2023
Band / Volume:
9
Volltext / DOI:
doi:10.3389/fcvm.2022.949454
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/36741834
WWW:
https://www.frontiersin.org/articles/10.3389/fcvm.2022.949454/full
TUM Einrichtung:
Klinik und Poliklinik für Vaskuläre und Endovaskuläre Chirurgie (Prof. Eckstein); Lehrstuhl für Biologische Bildgebung - Zusammenarbeit mit dem Helmholtz-Zentrum München (Prof. Ntziachristos)
 BibTeX