Benutzer: Gast  Login
Titel:

Generative myocardial motion tracking via latent space exploration with biomechanics-informed prior.

Dokumenttyp:
Journal Article; Research Support, Non-U.S. Gov't
Autor(en):
Qin, Chen; Wang, Shuo; Chen, Chen; Bai, Wenjia; Rueckert, Daniel
Abstract:
Myocardial motion and deformation are rich descriptors that characterize cardiac function. Image registration, as the most commonly used technique for myocardial motion tracking, is an ill-posed inverse problem which often requires prior assumptions on the solution space. In contrast to most existing approaches which impose explicit generic regularization such as smoothness, in this work we propose a novel method that can implicitly learn an application-specific biomechanics-informed prior and e...     »
Zeitschriftentitel:
Med Image Anal
Jahr:
2023
Band / Volume:
83
Volltext / DOI:
doi:10.1016/j.media.2022.102682
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/36403311
Print-ISSN:
1361-8415
TUM Einrichtung:
Institut für KI und Informatik in der Medizin
 BibTeX