Benutzer: Gast  Login
Titel:

Process Parameter Prediction in Laser Powder Bed Fusion Using an Artificial Neural Network

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Nudelis, Natan; Mayr, Peter
Abstract:
Pores are the inevitable concomitant in the current state of laser powder bed fusion (PBFLB/M) of AlSI10Mg components. Various pore characteristics, such as pore size and pore shape, influence the quality and affect the intended functionality of the component. Today, the experimental effort to find the appropriate process parameters for additive manufacturing (AM) results in high costs and long time-to-market. Pore formation is highly dependent on the applied process parameters. Consequently, po...     »
Stichworte:
Laser powder bed fusion, AlSi10Mg, Computed tomography, Pore classification, Artificial neural network
Zeitschriftentitel:
Key Engineering Materials
Jahr:
2023
Band / Volume:
964
Seitenangaben Beitrag:
59-64
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:10.4028/p-rl51ni
WWW:
https://www.scientific.net/KEM.964.59
Verlag / Institution:
Trans Tech Publications, Ltd.
E-ISSN:
1662-9795
Eingereicht (bei Zeitschrift):
23.05.2023
Angenommen (von Zeitschrift):
12.09.2023
Publikationsdatum:
23.11.2023
 BibTeX