Casting process simulations are commonly used to predict and avoid defect formation. Their integration into structural optimization can enable automated structure- and process-optimized castings. Nevertheless, these simulations are time-consuming and computationally expensive. Therefore, this paper used graph theory and skeletonization techniques to extract geometric features from arbitrary 3D geometries and transferred them to machine learning-metamodels. This method can replace casting process simulation for the prediction of directional solidification in low-pressure die casting. Automated machine learning and hyperparameter optimization were used to systemize the search for well-suited neural network architectures. Two examples were used to train the metamodels, which are subsequently evaluated by a further test example, unknown to the training data and compared to the simulation results. The results showed an accuracy on unknown geometries over 60 % and thus emphasized that neural network metamodels are capable of replacing time-consuming casting process simulation for specific objectives.
«
Casting process simulations are commonly used to predict and avoid defect formation. Their integration into structural optimization can enable automated structure- and process-optimized castings. Nevertheless, these simulations are time-consuming and computationally expensive. Therefore, this paper used graph theory and skeletonization techniques to extract geometric features from arbitrary 3D geometries and transferred them to machine learning-metamodels. This method can replace casting process...
»