Benutzer: Gast  Login
Titel:

Predicting the solidification time of low pressure die castings using geometric feature-based machine learning metamodels

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Rosnitschek, Tobias; Erber, Maximilian; Alber-Laukant, Bettina; Hartmann, Christoph; Volk, Wolfram; Rieg, Frank; Tremmel, Stephan
Abstract:
Casting process simulations are commonly used to predict and avoid defect formation. Their integration into structural optimization can enable automated structure- and process-optimized castings. Nevertheless, these simulations are time-consuming and computationally expensive. Therefore, this paper used graph theory and skeletonization techniques to extract geometric features from arbitrary 3D geometries and transferred them to machine learning-metamodels. This method can replace casting process...     »
Zeitschriftentitel:
Procedia CIRP
Jahr:
2023
Band / Volume:
118
Seitenangaben Beitrag:
1102-1107
Nachgewiesen in:
Scopus
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:10.1016/j.procir.2023.06.189
Verlag / Institution:
Elsevier BV
E-ISSN:
2212-8271
Publikationsdatum:
01.01.2023
TUM Einrichtung:
Lehrstuhl für Umformtechnik und Gießereiwesen
 BibTeX