Benutzer: Gast  Login
Titel:

Prediction of Aerodynamic Coefficients for Multi-Swept Delta Wings via a Hybrid Neuronal Network

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
MORITZ ZIEHER ; CHRISTIAN BREITSAMTER
Abstract:
In this study, the prediction capabilities of a hybrid neural network with regards to aerodynamic coefficients of multiple swept delta wings are investigated. The quick evaluation of aerodynamic coefficients based on a few geometrical and flow parameters instead of cost-consuming computational fluid dynamics simulations or wind tunnel experiments could save time and costs during early aircraft design phases. The training data is based on the results of wind tunnel measurements for a number o...     »
Dewey Dezimalklassifikation:
620 Ingenieurwissenschaften
Zeitschriftentitel:
Proceedings of the Aerospace Europe Conference - EUCASS - CEAS - 2023
Jahr:
2023
Sprache:
en
Volltext / DOI:
doi:10.13009/EUCASS2023-383
WWW:
https://www.eucass.eu/doi/EUCASS2023-383.pdf
Verlag / Institution:
Proceedings of the Aerospace Europe Conference - EUCASS - CEAS - 2023
Hinweise:
The funding of the presented work within the Luftfahrtforschungsprogramm VI-1 (LUFO VI-1) project DIGIfly (FKZ: 20X19091) by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) is gratefully acknowl- edged.
Publikationsdatum:
01.01.0202
TUM Einrichtung:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX