Benutzer: Gast  Login
Titel:

Improving Semantic Segmentation of Roof Segments Using Large-Scale Datasets Derived from 3D City Models and High-Resolution Aerial Imagery

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Faltermeier, Florian L.; Krapf, Sebastian; Willenborg, Bruno; Kolbe, Thomas H.
Abstract:
Advances in deep learning techniques for remote sensing as well as the increased availability of high-resolution data enable the extraction of more detailed information from aerial images. One promising task is the semantic segmentation of roof segments and their orientation. However, the lack of annotated data is a major barrier for deploying respective models on a large scale. Previous research demonstrated the viability of the deep learning approach for the task, but currently, published data...     »
Stichworte:
GISPro_CityGML; GISTop_CityModeling; GISTop_SpatialModelingAndAlgorithms; GISTop_Energy; RTGIS
Zeitschriftentitel:
Remote Sensing
Jahr:
2023
Band / Volume:
15
Jahr / Monat:
2023-04
Quartal:
1. Quartal
Monat:
Apr
Heft / Issue:
17
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:10.3390/rs15071931
WWW:
https://www.mdpi.com/2072-4292/15/7/1931
Print-ISSN:
2072-4292
E-ISSN:
2072-4292
Eingereicht (bei Zeitschrift):
26.02.2023
Angenommen (von Zeitschrift):
30.03.2023
Publikationsdatum:
04.04.2023
TUM Einrichtung:
Lehrstuhl für Fahrzeugtechnik; Lehrstuhl für Geoinformatik
Format:
Text
 BibTeX