Benutzer: Gast  Login
Titel:

Uncertainty Quantification for Ionosphere Forecasting with Machine Learning

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Vortrag / Präsentation
Autor(en):
Natras R., Soja B., Schmidt M.
Abstract:
The accuracy and reliability of Global Navigation Satellite System (GNSS) applications are affected by the Earth‘s ionosphere. Accurate and timely corrections of ionospheric effects and early warning information in the presence of space weather are therefore crucial for GNSS applications. To model the impact of space weather, a complex chain of physical dynamical processes between the Sun and the ionosphere need to be taken into account. These nonlinear processes and relationships can be approxi...     »
Stichworte:
Ionosphere forecasting, Vertical Total Electron Content (VTEC), Space weather, Machine learning, Uncertainty quantification
Kongress- / Buchtitel:
International Workshop on GNSS Ionosphere (IWGI2022) - Observations,Modelling and Applications
Ausrichter der Konferenz:
Institute for Solar-Terrestrial Physics, German Aerospace Center (DLR)
Datum der Konferenz:
2022-09-26
Jahr:
2022
TUM Einrichtung:
Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)
 BibTeX