Benutzer: Gast  Login
Titel:

Families of Polytopes with Rational Linear Precision in Higher Dimensions

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Davies, Isobel; Duarte, Eliana; Portakal, Irem; Sorea, Miruna-Ştefana
Abstract:
In this article, we introduce a new family of lattice polytopes with rational linear precision. For this purpose, we define a new class of discrete statistical models that we call multinomial staged tree models. We prove that these models have rational maximum likelihood estimators (MLE) and give a criterion for these models to be log-linear. Our main result is then obtained by applying Garcia-Puente and Sottile’s theorem that establishes a correspondence between polytopes with rational linear p...     »
Stichworte:
Lattice polytope; Horn parametrization; Rational linear precision; Primitive collection; Log-linear model; Maximum likelihood estimator; Toric variety; Staged tree
Dewey Dezimalklassifikation:
510 Mathematik
Zeitschriftentitel:
Foundations of Computational Mathematics
Jahr:
2022
Jahr / Monat:
2022-08
Quartal:
3. Quartal
Monat:
Aug
Volltext / DOI:
doi:10.1007/s10208-022-09583-7
Verlag / Institution:
Springer Science and Business Media LLC
E-ISSN:
1615-33751615-3383
Publikationsdatum:
08.08.2022
Semester:
SS 22
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX