Computing platforms providing cloud simulation services have raised new challenges on the model integration. Unlike calls to the model programs (components) in traditional simulation software, here the models should be dynamically integrated in the “plug and play” mode regardless of the differences in model type and developer. To this end two integration methods have been proposed, i.e., coarse-grained EXE integration and interactive integration. In an EXE integration method, the simulation program is directly called and thus only a data conversion interface is needed while rewriting of the model source code is not required. In contrast, an interactive integration method wraps the model components using the standard wrapper with communication interfaces, and therefore, it can communicate and exchange data with the platform in a real time. The first method is suitable for the integration of legacy models, while the second one can control the progress of simulation schemes and facilitate the scheduling of computing resources. Examples of the model integration and platform application have been presented in hydraulics/hydrodynamics to demonstrate the effectiveness of the integration method and the cloud computing platform.
«
Computing platforms providing cloud simulation services have raised new challenges on the model integration. Unlike calls to the model programs (components) in traditional simulation software, here the models should be dynamically integrated in the “plug and play” mode regardless of the differences in model type and developer. To this end two integration methods have been proposed, i.e., coarse-grained EXE integration and interactive integration. In an EXE integration method, the simulation prog...
»