Over the past years navigated repetitive transcranial magnetic stimulation (nrTMS) had become increasingly important for the preoperative examination and mapping of eloquent brain areas. Among other applications it was demonstrated that the detection of neuropsychological function, such as arithmetic processing or face recognition, is feasible with nrTMS. In order to investigate the mapping of further brain functions, this study aims to investigate the cortical mapping of categorization function via nrTMS. 20 healthy volunteers purely right-handed, with German as mother tongue underwent nrTMS mapping using 5 Hz/10 pulses. 52 cortical spots spread over each hemisphere were stimulated. The task consisted of 80 pictures of living and non-living images, which the volunteers were instructed to categorize while the simulation pulses were applied. The highest error rates for all errors of all subjects were observed in the left hemisphere's posterior middle frontal gyrus (pMFG) with an error rate of 60%, as well as in the right pMFG and posterior supra marginal gyrus (pSMG) (45%). In total the task processing of non-living objects elicited more errors in total, than the recognition of living objects. nrTMS is able to detect cortical categorization function. Moreover, the observed bihemispheric representation, as well as the higher error incidence for the recognition of non-living objects is well in accordance with current literature. Clinical applicability for preoperative mapping in brain tumor patients but also in general neuroscience has to be evaluated as the next step.
«
Over the past years navigated repetitive transcranial magnetic stimulation (nrTMS) had become increasingly important for the preoperative examination and mapping of eloquent brain areas. Among other applications it was demonstrated that the detection of neuropsychological function, such as arithmetic processing or face recognition, is feasible with nrTMS. In order to investigate the mapping of further brain functions, this study aims to investigate the cortical mapping of categorization function...
»