We propose a method for out-of-plane artifact reduction in digital breast tomosynthesis reconstruction. Because of the limited angular range acquisition in DBT, the reconstructed slices have reduced resolution in z-direction and are affected by artifacts. The out-of-plane blur caused by dense tissue and large masses complicates reconstruction of thick slices volumes. The streak-like out-of-plane artifacts caused by calcifications and metal clips distort the shape of calcifications which is regarded by many radiologists as an important malignancy predictor. Small clinical features such as micro-calcifications could be obscured by bright artifacts. The proposed technique involves reconstructing a set of super-resolution slices and predicting the artifact-free voxel intensity based on the corresponding set of projection pixels using a statistical model learned from a set of training data. Our experiments show that the resulting reconstructed images are de-blurred and streak-like artifacts are reduced, visibility of clinical features, contrast and sharpness are improved and thick-slice reconstruction is possible without the loss of contrast and sharpness.
«
We propose a method for out-of-plane artifact reduction in digital breast tomosynthesis reconstruction. Because of the limited angular range acquisition in DBT, the reconstructed slices have reduced resolution in z-direction and are affected by artifacts. The out-of-plane blur caused by dense tissue and large masses complicates reconstruction of thick slices volumes. The streak-like out-of-plane artifacts caused by calcifications and metal clips distort the shape of calcifications which is regar...
»