Benutzer: Gast  Login
Titel:

End-to-end privacy preserving deep learning on multi-institutional medical imaging

Dokumenttyp:
Article
Autor(en):
Kaissis, Georgios; Ziller, Alexander; Passerat-Palmbach, Jonathan; Ryffel, Theo; Usynin, Dmitrii; Trask, Andrew; Lima, Ionesio; Mancuso, Jason; Jungmann, Friederike; Steinborn, Marc-Matthias; Saleh, Andreas; Makowski, Marcus; Rueckert, Daniel; Braren, Rickmer
Abstract:
Using large, multi-national datasets for high-performance medical imaging AI systems requires innovation in privacy-preserving machine learning so models can train on sensitive data without requiring data transfer. Here we present PriMIA (Privacy-preserving Medical Image Analysis), a free, open-source software framework for differentially private, securely aggregated federated learning and encrypted inference on medical imaging data. We test PriMIA using a real-life case study in which an expert...     »
Zeitschriftentitel:
Nat. Mach. Intell.
Jahr:
2021
Band / Volume:
3
Heft / Issue:
6
Seitenangaben Beitrag:
473-484
Volltext / DOI:
doi:10.1038/s42256-021-00337-8
TUM Einrichtung:
Institut für Diagnostische und Interventionelle Radiologie; Institut für Medizinische Statistik und Epidemiologie
 BibTeX