A modern operating room (OR) provides a plethora of advanced medical devices. In order to better facilitate the information offered by them, they need to automatically react to the intra-operative context. To this end, the progress of the surgical workflow must be detected and interpreted, so that the current status can be given in machine-readable form. In this work, Random Forests (RF) and Hidden Markov Models (HMM) are compared and combined to detect the surgical workflow phase of a laparoscopic cholecystectomy. Various combinations of data were tested, from using only raw sensor data to filtered and augmented datasets. Achieved accuracies ranged from 64% to 72% for the RF approach, and from 80% to 82% for the combination of RF and HMM.
«
A modern operating room (OR) provides a plethora of advanced medical devices. In order to better facilitate the information offered by them, they need to automatically react to the intra-operative context. To this end, the progress of the surgical workflow must be detected and interpreted, so that the current status can be given in machine-readable form. In this work, Random Forests (RF) and Hidden Markov Models (HMM) are compared and combined to detect the surgical workflow phase of a laparosco...
»