Advances in sensing and digitalization enable us to acquire and present various heterogeneous datasets to enhance clinical decisions. Visual feedback is the dominant way of conveying such information. However, environments rich with many sources of information all presented through the same channel pose the risk of over stimulation and missing crucial information. The augmentation of the cognitive field by additional perceptual modalities such as sound is a workaround to this problem. A major challenge in auditory augmentation is the automatic generation of pleasant and ergonomic audio in complex routines, as opposed to overly simplistic feedback, to avoid fatigue. In this work, without loss of generality to other procedures, we propose a method for aural augmentation of ophthalmic procedures via automatic modification of musical pieces. Evaluations of this first proof of concept regarding recognizability of the conveyed information along with qualitative aesthetics show the potential of our method.
«
Advances in sensing and digitalization enable us to acquire and present various heterogeneous datasets to enhance clinical decisions. Visual feedback is the dominant way of conveying such information. However, environments rich with many sources of information all presented through the same channel pose the risk of over stimulation and missing crucial information. The augmentation of the cognitive field by additional perceptual modalities such as sound is a workaround to this problem. A major ch...
»