Benutzer: Gast  Login
Titel:

Time-series Forecasting of Ionospheric Space Weather using Ensemble Machine Learning

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Poster
Autor(en):
Natras R., Schmidt M.
Abstract:
Space weather describes varying conditions in the space environment between the Sun and Earth that can affect satellites and technologies on the Earth such as navigation systems, power grids, radio and satellite communications. In order to model and predict the space weather, a complex chain of physical processes between the Sun, the interplanetary space, the Earth’s magnetic field and the ionosphere have to be taken into account. Often, however, we do not have physical and/or mathematical relat...     »
Stichworte:
Time series, Machine Learning, Ionosphere, Space Weather
Kongress- / Buchtitel:
Affinity Workshop Women in Machine Learning (WiML) at the Thirty-eighth International Conference on Machine Learning (ICML) 2021
Datum der Konferenz:
2021-07-18 - 2021-07-24
Jahr:
2021
Jahr / Monat:
2021-07
TUM Einrichtung:
Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)
 BibTeX