Benutzer: Gast  Login
Titel:

Geometry of Kantorovich Polytopes and Support of Optimizers for Repulsive Multi-Marginal Optimal Transport on Finite State Spaces

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Vögler, Daniela
Nicht-TUM Koautoren:
nein
Kooperation:
-
Abstract:
We consider symmetric multi-marginal Kantorovich optimal transport problems on finite state spaces with uniform-marginal constraint. Hereby the symmetry of the problem refers to an assumption on the cost function as well as a corresponding restriction of the set of admissible trial states where the former enables the latter. Note that the symmetry of this setting forces us to pick for each of the considered marginals one and the same probability measure. The said problems consist of minimizing a...     »
Stichworte:
Optimal transport, Monge's ansatz, N-representability, Birkhoff-von Neumann theorem, Density functional theory, Support-condition for optimizers
Intellectual Contribution:
Discipline-based Research
Zeitschriftentitel:
Journal of Mathematical Analysis and Applications
Journal gelistet in FT50 Ranking:
nein
Jahr:
2021
Seitenangaben Beitrag:
125147
Volltext / DOI:
doi:10.1016/j.jmaa.2021.125147
WWW:
https://www.sciencedirect.com/science/article/pii/S0022247X21002262
Print-ISSN:
0022-247X
Urteilsbesprechung:
0
Key publication:
Ja
Peer reviewed:
Ja
commissioned:
not commissioned
Technology:
Nein
Interdisziplinarität:
Nein
Leitbild:
;
Ethics und Sustainability:
Nein
 BibTeX
Versionen