Benutzer: Gast  Login
Titel:

Robust Sim2Real Transfer by Learning Inverse Dynamics of Simulated Systems

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Malmir, Mohammadhossein; Josifovski, Josip; Klarmann, Noah; Knoll, Alois
Abstract:
This paper presents a data-driven nonlinear disturbance observer to reduce the reality gap caused by the imperfect simulation of the real-world physics. The main focus is on increasing robustness of the closed-loop control without changing the RL algorithm or simulation model to account for the uncertainty of the real world. For this purpose, a DNN representing inverse dynamics of the deterministic source-domain environment is learned by the simulation data. The proposed approach offers a system...     »
Stichworte:
inverse dynamics, disturbance observer, robotic manipulation, robust reinforcement learning, sim2real transfer
Dewey-Dezimalklassifikation:
000 Informatik, Wissen, Systeme
Horizon 2020:
ECSEL Joint Undertaking under the H2020 AI4DI project (grant agreement 826060)
Kongress- / Buchtitel:
2nd Workshop on Closing the Reality Gap in Sim2Real Transfer for Robotics
Verlag / Institution:
Robotics: Science and Systems (R:SS)
Publikationsdatum:
30.07.2020
Jahr:
2020
Reviewed:
ja
Sprache:
en
Erscheinungsform:
WWW
WWW:
https://sim2real.github.io/assets/papers/2020/malmir.pdf
Format:
Text
 BibTeX