In this paper, an efficient method for the numerical simulation of near- and far-field propagation of stochastic electromagnetic (EM) fields is presented. The method is based on the transformation of field correlation dyadics using Green's functions or the field transfer functions computed for deterministic fields. The method accounts for arbitrary correlations between the noise radiation sources and allows to compute the spatial distribution of the spectral energy density of noisy electromagnetic sources. The introduced methodology can be combined with available electromagnetic modeling tools. It is shown that the method of moments can be applied to solve noisy electromagnetic field problems by network methods applying correlation matrix techniques. Examples demonstrating the strong influence of the correlation between the sources on the spatial distribution of the radiated noise field are presented.
«
In this paper, an efficient method for the numerical simulation of near- and far-field propagation of stochastic electromagnetic (EM) fields is presented. The method is based on the transformation of field correlation dyadics using Green's functions or the field transfer functions computed for deterministic fields. The method accounts for arbitrary correlations between the noise radiation sources and allows to compute the spatial distribution of the spectral energy density of noisy electromagnet...
»