Benutzer: Gast  Login
Weniger Felder
Einfache Suche
Titel:

Machine Learning & multiscale simulations: toward fast screening of organic semiconductor materials

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Rinderle, M.; Gagliardi, A.
Abstract:
Organic semiconductor devices promise cost-efficient processability at low temperatures, but the usually amorphous materials suffer from low charge carrier mobility. The search for high mobility organic semiconductor materials has thrived data science and Machine Learning approaches to screen the vast amount of possible organic materials. We present a multiscale simulation model based on machine learned transfer integrals to compute the charge carrier mobility in organic thin films.
Kongress- / Buchtitel:
International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)
Kongress / Zusatzinformationen:
Torino, Italy 13-17 Sep 2021-09
Verlag / Institution:
IEEE Explore Library
Jahr:
2021
Quartal:
3. Quartal
Jahr / Monat:
2021-09
Monat:
Sep
Print-ISBN:
2158-3234
E-ISBN:
978-1-6654-1276-6
Serien-ISSN:
2158-3242, 2158-3234
Sprache:
en
Volltext / DOI:
doi:10.1109/NUSOD52207.2021.9541414
WWW:
https://ieeexplore.ieee.org/abstract/document/9541414
 BibTeX