Benutzer: Gast  Login
Titel:

DeepDRR – A Catalyst for Machine Learning in Fluoroscopy-Guided Procedures

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Unberath, M.; zaech; Lee, J.; Bier, B.; Fotouhi, J.; Armand, M.; Navab, N.
Abstract:
Machine learning-based approaches outperform competing methods in most disciplines relevant to diagnostic radiology. Interventional radiology, however, has not yet benefited substantially from the advent of deep learning, in particular because of two reasons: (1) Most images acquired during the procedure are never archived and are thus not available for learning, and (2) even if they were available, annotations would be a severe challenge due to the vast amounts of data. When considering fluoros...     »
Stichworte:
CAMP,MICCAI,deeplearning
Herausgeber:
Frangi, Alejandro F.; Schnabel, Julia A.; Davatzikos, Christos; Alberola-López, Carlos; Fichtinger, Gabor
Kongress- / Buchtitel:
Medical Image Computing and Computer Assisted Intervention -- MICCAI 2018
Verlag / Institution:
Springer International Publishing
Verlagsort:
Cham
Jahr:
2018
Seiten:
98--106
Print-ISBN:
978-3-030-00937-3
 BibTeX