In dieser Arbeit werden Ansätze für das unüberwachte Lernen von Bilddarstellungen entwickelt, mit dem Ziel, die Komplexität des Trainings gegenüber rein datengetriebener Ansätze zu reduzieren und die Genauigkeit gegenüber manuell erstellter Modelle zu erhöhen. Zu diesem Zweck wird anwendungsspezifisches Wissen über die Bilderzeugung in spärliche, unüberwachte Lernmodelle für Bilddarstellungen integriert. Benchmark-Ergebnisse für uni- und multimodale Bildrekonstruktion, -Ausrichtung und -Segmentierung zeigen, dass die entwickelten numerischen Verfahren dem aktuellsten Stand der Technik entsprechen.
«
In dieser Arbeit werden Ansätze für das unüberwachte Lernen von Bilddarstellungen entwickelt, mit dem Ziel, die Komplexität des Trainings gegenüber rein datengetriebener Ansätze zu reduzieren und die Genauigkeit gegenüber manuell erstellter Modelle zu erhöhen. Zu diesem Zweck wird anwendungsspezifisches Wissen über die Bilderzeugung in spärliche, unüberwachte Lernmodelle für Bilddarstellungen integriert. Benchmark-Ergebnisse für uni- und multimodale Bildrekonstruktion, -Ausrichtung und -Segmenti...
»