Benutzer: Gast  Login

Titel:

Toward Robust and Scalable Deep Spiking Reinforcement Learning

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Akl, Mahmoud; Ergene, Deniz; Walter, Florian; Knoll, Alois
Abstract:
Deep reinforcement learning (DRL) combines reinforcement learning algorithms with deep neural networks (DNNs). Spiking neural networks (SNNs) have been shown to be a biologically plausible and energy efficient alternative to DNNs. Since the introduction of surrogate gradient approaches that allowed to overcome the discontinuity in the spike function, SNNs can now be trained with the backpropagation through time (BPTT) algorithm. While largely explored on supervised learning problems, little work...     »
Zeitschriftentitel:
Frontiers in Neurorobotics
Jahr:
2023
Band / Volume:
16
Volltext / DOI:
doi:10.3389/fnbot.2022.1075647
Print-ISSN:
1662-5218
 BibTeX