Limited-view artifacts are commonly present in optoacoustic tomography images, mainly due to practical geometrical and physical constraints imposed by the imaging systems. Herein, a new approach called dynamic particle-enhanced optoacoustic tomography (DPOT) is proposed for improving image contrast and visibility of optoacoustic images under limited-view scenarios. The method is based on a nonlinear combination of a temporal sequence of tomographic reconstructions representing sparsely distributed moving particles. We demonstrate experimental performance by dynamically imaging the flow of suspended microspheres in three dimensions, which shows promise for DPOT applicability in angiographic imaging in living organisms.
«
Limited-view artifacts are commonly present in optoacoustic tomography images, mainly due to practical geometrical and physical constraints imposed by the imaging systems. Herein, a new approach called dynamic particle-enhanced optoacoustic tomography (DPOT) is proposed for improving image contrast and visibility of optoacoustic images under limited-view scenarios. The method is based on a nonlinear combination of a temporal sequence of tomographic reconstructions representing sparsely distribut...
»