For internal combustion engine, the determination of combustion characteristics and subsequent emissions formation relies heavily on the fuel injection process. With the increasing demand for enhanced fuel efficiency and reduced emissions, it becomes vital to develop fundamental understanding of physical process involved in the fuel injection process. In this study, an optimal numerical approach to predict high pressure liquid injection process in the context of industrial computations has been investigated. In particular, this study focuses on the respective performance of the Partially-Averaged Navier−Stokes and Large Eddy Simulation models to predict turbulent igniting sprays. Both approaches are coupled with widely used Lagrangian Discrete Droplet Method for spray modelling. The results are validated against well established ECN Spray A case in reactive and non reactive conditions. For reacting conditions, Flamelet Genrated Manifold (FGM) combustion model is employed in the present work. Comparative study and validation against experimental data showed that PANS turbulence model allows for coarser grids while still maintaining accurate results.
«
For internal combustion engine, the determination of combustion characteristics and subsequent emissions formation relies heavily on the fuel injection process. With the increasing demand for enhanced fuel efficiency and reduced emissions, it becomes vital to develop fundamental understanding of physical process involved in the fuel injection process. In this study, an optimal numerical approach to predict high pressure liquid injection process in the context of industrial computations has been...
»