After ground-based skidding operations, soil particles are rearranged closer together resulting in increased bulk density, reduced total porosity, and decreased infiltration capacity. The aim of the present study was to assess and quantify runoff and sediment in both leafed and leafless periods (foliage) over a 1-year duration following three levels of skidder traffic intensity (low, medium, high) performed in the Hyrcanian forests, Iran. By increasing traffic frequency, soil bulk density increased significantly, whereas total porosity decreased as compared to undisturbed (control) plots. After trafficking, runoff and sediment yield were significantly affected by foliage and traffic frequency. Regardless of foliage, mean total runoff and sediment increased with increasing traffic frequency performed on the skid trail. Mean runoff in the low, medium, and high traffic plots in the leafless period were 95.5, 54.2, and 21.7{%} higher than the values of runoff in the leafed period, respectively. Mean sediment yield in the low, medium, and high traffic plots in the leafless period was 7.1, 5.1, and 3.3 times higher than the values of sediment in the leafed period, respectively. Based on regression analysis, the runoff and sediment response to rainfall for the control plots and three traffic intensity classes were linear and statistically significant for both leafless and leafed periods. The total runoff in the high traffic intensity plot was 239.8~mm (62{%}) during the leafless period, and 38{%} of total runoff (148~mm) occurred during the leafed period. The sediment response to runoff over both leafless and leafed periods at all the traffic intensity classes and control plots were significantly linear. Restricting ground-based skidding operations to trail segments where the machine traffic is less than 4 (low)---9 (medium) traffic cycles can be effective to reduce runoff and sediment over compacted soil after machine-induced traffic.
«
After ground-based skidding operations, soil particles are rearranged closer together resulting in increased bulk density, reduced total porosity, and decreased infiltration capacity. The aim of the present study was to assess and quantify runoff and sediment in both leafed and leafless periods (foliage) over a 1-year duration following three levels of skidder traffic intensity (low, medium, high) performed in the Hyrcanian forests, Iran. By increasing traffic frequency, soil bulk density increa...
»