Benutzer: Gast  Login
Titel:

Uncertainty quantification in brain tumor segmentation using CRFs and random perturbation models

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Alberts, E.; Rempfler, M.; Alber, G.; Huber, D.; Kirschke, J.; Zimmer, C.; Menze, B.
Abstract:
Medical image segmentation is a challenging task and algorithms often struggle with the high variability of inhomogeneous clinical data, demanding different parameter settings or resulting in weak segmentation accuracy across different inputs. Assessing the uncertainty in the resulting segmentation therefore becomes crucial for both communicating with the end-user and calculating further metrics of interest based on it, for example, in tumor volumetry. In this paper, we quantify segmentation...     »
Stichworte:
ISBI,IBBM
Jahr:
2016
 BibTeX