This work presents a model of an elasto-flexible membrane airfoil. As the deformation of the configuration is significant to change the fluid flow itself, so called 2-ways Fluid Structure Interaction (FSI) simulations are performed to reproduce the aerodynamics of the profile: the solution is achieved in different iterative loops where both models are mapped to each other until convergence is found or the process is stopped manually. A partitioned approach is used between the FEM solver CARAT++ and the U-RANS solver TAU to model the con
figuration. In order to validate the model, aerodynamic data, the deformation and the flow field resulting from the coupling are compared with experimental and numerical results generated with ANSYS. Some discordance appears between the two approaches: on the one hand, 3D effects during the experiments are very significant and on the other hand, the absence of the contact modeling in CARAT++ results affects the comparison.
«
This work presents a model of an elasto-flexible membrane airfoil. As the deformation of the configuration is significant to change the fluid flow itself, so called 2-ways Fluid Structure Interaction (FSI) simulations are performed to reproduce the aerodynamics of the profile: the solution is achieved in different iterative loops where both models are mapped to each other until convergence is found or the process is stopped manually. A partitioned approach is used between the FEM solver CARAT++...
»