User: Guest  Login
Title:

A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling.

Document type:
Journal Article
Author(s):
Leger, Stefan; Zwanenburg, Alex; Pilz, Karoline; Lohaus, Fabian; Linge, Annett; Zöphel, Klaus; Kotzerke, Jörg; Schreiber, Andreas; Tinhofer, Inge; Budach, Volker; Sak, Ali; Stuschke, Martin; Balermpas, Panagiotis; Rödel, Claus; Ganswindt, Ute; Belka, Claus; Pigorsch, Steffi; Combs, Stephanie E; Mönnich, David; Zips, Daniel; Krause, Mechthild; Baumann, Michael; Troost, Esther G C; Löck, Steffen; Richter, Christian
Abstract:
Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall su...     »
Journal title abbreviation:
Sci Rep
Year:
2017
Journal volume:
7
Journal issue:
1
Pages contribution:
13206
Language:
eng
Fulltext / DOI:
doi:10.1038/s41598-017-13448-3
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/29038455
Print-ISSN:
2045-2322
TUM Institution:
Klinik und Poliklinik für RadioOnkologie und Strahlentherapie
 BibTeX