Benutzer: Gast  Login
Titel:

A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling.

Dokumenttyp:
Journal Article
Autor(en):
Leger, Stefan; Zwanenburg, Alex; Pilz, Karoline; Lohaus, Fabian; Linge, Annett; Zöphel, Klaus; Kotzerke, Jörg; Schreiber, Andreas; Tinhofer, Inge; Budach, Volker; Sak, Ali; Stuschke, Martin; Balermpas, Panagiotis; Rödel, Claus; Ganswindt, Ute; Belka, Claus; Pigorsch, Steffi; Combs, Stephanie E; Mönnich, David; Zips, Daniel; Krause, Mechthild; Baumann, Michael; Troost, Esther G C; Löck, Steffen; Richter, Christian
Abstract:
Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall su...     »
Zeitschriftentitel:
Sci Rep
Jahr:
2017
Band / Volume:
7
Heft / Issue:
1
Seitenangaben Beitrag:
13206
Sprache:
eng
Volltext / DOI:
doi:10.1038/s41598-017-13448-3
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/29038455
Print-ISSN:
2045-2322
TUM Einrichtung:
Klinik und Poliklinik für RadioOnkologie und Strahlentherapie
 BibTeX