User: Guest  Login
More Searchfields
Simple search
Title:

Machine Learning–Based Charge Transport Computation for Pentacene

Document type:
Zeitschriftenaufsatz
Author(s):
Lederer, J.; Kaiser, W.; Mattoni, A.; Gagliardi, A.
Abstract:
Insight into the relation between morphology and transport properties of organic semiconductors can be gained using multiscale simulations. Since computing electronic properties, such as the intermolecular transfer integral, using quantum chemical (QC) methods requires a high computational cost, existing models assume several approximations. A machine learning (ML)–based multiscale approach is presented that allows to simulate charge transport in organic semiconductors considering the static dis...     »
Keywords:
charge transport machine learning multiscale approach organic semiconductors pentacene
Journal title:
Advanced Theory and Simulations, Volume2, Issue2 February 1800136 2019-02
Year:
2019
Year / month:
2019-02
Quarter:
2. Quartal
Month:
Feb
Pages contribution:
1-11
Language:
en
Fulltext / DOI:
doi:10.1002/adts.201800136
WWW:
https://onlinelibrary.wiley.com/doi/10.1002/adts.201800136
Publisher:
Wiley Online Library
 BibTeX