Diese Dissertation stellt eine Formalisierung von gewöhnlichen Differentialgleichungen (GDGL) und die Verifikation von rigorosen (mit garantierten Fehlerschranken) numerischen Algorithmen im interaktiven Theorembeweiser Isabelle/HOL vor. Die Formalisierung umfasst Fluss und Poincaré-Abbildung dynamischer Systeme. Die verifizierten Algorithmen basieren auf Runge-Kutta-Verfahren und affiner Arithmetik. Sie zertifizieren numerische Schranken für den Lorenz Attraktor und heben dadurch den numerischen Teil von Tuckers Beweis von Smales 14. Problem auf eine formale Grundlage.
«